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Abstract 

An estimate for the first eigenvalue of the Dirac operator on compact Riemannian spin manifold 
of positive scalar curvature admitting a parallel one-form is found. The possible universal cover- 
ing spaces of the manifolds on which the smallest possible eigenvalue is attained are also listed. 
Moreover, a complete classification of the compact odd-dimensional manifolds whose universal 
covering space is S”-’ x Iw is given in the limiting case. All such manifolds are diffeomorphic but 
not necessarily isometric to S”-’ x S’. 0 1998 Elsevier Science B.V. 
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1. Introduction 

Let M be a compact Riemannian spin n-manifold of positive scalar curvature s. Friedrich 
[7] proved that any eigenvalue h of the Dirac operator D satisfies the inequality 

*2>n- infM s 

-n-1 4 ’ (1) 
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and in case of equality the corresponding eigenspinor is Killing spinor (see the definition 
below). Killing spinors are automatically eigenspinors for D of smallest possible eigenvalue. 

Afterwards Hijazi [ 141 showed that if the manifold M admits a parallel k-form, k # 0, n, 
then on M do not exist Killing spinors. Hence, the estimate (1) is not sharp on such manifolds. 
Indeed, better estimates have been proved for Kahler spin manifolds by Kirchberg [ 19,211 
(see also [10,20,23,25] for the limiting case) and for quatemionic Kahler manifolds by 
Kramer et al. [22] (see also [16,17,24]). 

In this note we improve (1) in the case of manifolds admitting a parallel one-form. 
Namely, we prove the following: 

Theorem 1.1. Let M be a compact n-dimensional Riemannian spin manifold of positive 
scalar curvature s admitting a parallel one-form. Then any eigenvalue of the Dirac operator 
satisfies the inequality 

h2 > 
n - 1 infM s 
--. 

-n-2 4 
(2) 

A spinor field I,!J on Riemannian spin manifold is called Killing spinor with Killing 
constant a! if for all tangent vectors X the equation Vx+ = aX . I) holds. Here X . $ 
denotes the Clifford product of X and @. If M carries a Killing spinor then it is Einstein 
with scalar curvature s = 4n(n - 1)~~. There are three distinct possibilities: a! can be zero 
and in this case $ is a parallel spinor field; o can be purely imaginary, then M is noncompact 
and $ is called an imaginary Killing spinor, and finally, o can be real, then M is compact 
(if complete) and r+k is called a real Killing spinor. 

Hitchin [ 181 showed that the manifolds with parallel spinors can be characterized by 
their holonomy group (see also [8,26]). Manifolds with imaginary Killing spinors have 
been classified by Baum [ 1,2]. 

Many results on real Killing spinors had been known (see [9,11,13,15]) until Bar [4] 
gave a description of all complete simply connected Riemannian manifolds carrying real 
Killing spinors. Using his results, in Theorem 3.1 we list the universal covering spaces of 
the manifolds for which the limiting case in Theorem 1.1 is attained. We also prove that on 
all compact odd-dimensional oriented Riemannian manifolds admitting a parallel one-form 
whose universal covering space is S”-’ x R the limiting case is attained. We show that 
all such manifolds are diffeomorphic but not necessarily isometric to Y-t x S’ . Thus we 
obtain all odd-dimensional limiting manifolds with exception of dimension 7, where other 
limiting manifolds also exist. 

2. Proof of Theorem 1.1 

Let (M, g) be a Riemannian spin manifold of dimension n with a spinor bundle S. Let 
TM be the tangent bundle of M, T* M - the cotangent bundle and (., .) - the standard 
Hermitian inner product on S. Denote by V the covariant derivative of the Levi-Civita 
connection on both TM and S. 
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Let p : TM 69 S + S be the Clifford multiplication. The Dirac operator D : f(S) + (S) 
isdefinedbyD=poV.Ifer,e2,... , e, is a local orthonormal frame on M then 

Dlc/ = CeiVc,+, @ E r(S). 
i=l 

It is well known that the Dirac operator coincides with its formal adjoint and satisfies the 
Lichnerovicz formula: 

D2 = A + is. 

Let 0 be a parallel one-form on M and e be the dual vector field. Since the length of c is 
constant we can assume that it is of unit length. Hence, we can consider 6 as a section of the 
endomorphisms of S with the property t2 = -id. We denote by S+l the eigenspaces of c 
corresponding to the eigenvalues +a, respectively. Note that S&t are not the half spinor 
bundles when the dimension of M is even. We have the orthogonal splitting S = St @ ,I_ 1 
and S&r are parallel, i.e. V: F(S,) + r(T*M @ S,), r = fl. If X E TM, X I c, then 
for any $ E S, we have X$ E SPr, r = fl. 

Let n, : TM 8 S,. + Ker p I TM~,.s,, Y = f 1, be the orthogonal projections. Then we 
have 

i=l 

1 n 
+- 

n-l c ei @ F(ei)p(X>@, 
i=l 

where p is the projection on ,$,p is the projection on the (n - 1)-dimensional orthogonal 
complement of 6, X E r(TM), I++ E r(S,), and r = fl. 

We consider the following differential operators (the twistor operators) P,. = n, o V, 
r = &l. We have 

P,lc, = eei C3 Ve,+ + 2 ei @ P(ei)P(ej)VejIlr 
i=l i,j=l 

(3) 

The expressions for PI and P-1 differ only by the domain of $r, so from now on we will 
omit the index when writing Pr. 

Let the local orthonormal frame et, e2, . . . , e, be such that e, = e. Then Eq. (3) is 
equivalent to 

n-l 

(4) 
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Now, let A4 be a compact manifold with positive scalar curvature s. Squaring (4), inte- 
grating over M and using the Lichnerovicz formula we obtain 

Let h be an eigenvalue of D and let $, be an eigenspinor corresponding to the eigenvalue 
h2 of D2. Since D2 preserves the splitting S = St $ S_ 1 we can choose I++ E F(S,.) for 
r = 1 or r = -1. Hence, from (5) we obtain the estimate (2), which completes the proof 
of Theorem 1.1. 

3. The limiting case 

Let we have equality in (2). Then it follows from (5) that the eigenspinor @ E f (S,) of 
D2 satisfies the equations 

P$=O, v,q = 0. (6) 

Hence, D+ = D’y? E f (S-,) and it follows from (4) that 

1 
n-l 

v’+ + - c 
n-l i=, 

ei @eiD+ = 0. (7) 

The spinor field D+ E f (S-,.) is also an eigenspinor of D2 for the eigenvalue h2 and hence 
satisfies (6) and (7) too. Let q = I++ + (l/h) D$. Then it follows from (6) and (7) that 

Let fi be the universal covering space of M. Then k carries a parallel vector field i of 
unit length and a spinor field @ satisfying (8). In particular, k is isometric to the product 
F x R. Given a spin manifold M = F x R then there exists a natural spin structure on F 
induced by that of M, and conversely: if F is a spin manifold then the product M = F x R 
carries a natural spin structure, which induces the given spin structure on F (see [2,3]). 
Applying this fact to k we get from (8) that (p is a real Killing spinor on F (it is clear that 
V’ is the Levi-Civita connection on k). 

Thus we obtain that if on an n-dimensional spin manifold M admitting a parallel one- 
form the limiting case of inequality (2) occurs, then the universal covering space 6 of M is 
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isometric to the product 1;: x R, where k is a simply connected compact Einstein manifold 
of dimension (n - 1) admitting a real Killing spinor. 

Using the classification of all simply connected complete Reimannian manifolds carrying 
real Killing spinor given by Bar in [4, Theorems 1,2’, 3’, 4’, 5’1 we obtain the following. 

Theorem 3.1. Let M be a compact n-dimensional Reimannian spin mantfold of positive 
scalar curvature s admitting a parallel one-form and let thejrst eigenvalue h of the Dirac 
operator on M satisfy the equality 

h2 = (n - 1) infkt s 
(n - 2) 4 

Then the universal covering space G of M is isometric to the Reimannian product F x [w, 
where up to multiplication of the metric with constant @ is one of the following: 
(1) F = Sn-‘, n > 3. 
(2) F is nearly Kahler non-Kahler manifold, n = 7. 
(3) @ is an Einstein-Sasaki manifold, n = 4m + 2, m > 1 odd. 
(4) F is an Einstein-Sasaki manifold, but does not carry a Sasaki-3-structure, n = 4m, 

m > 2. 
(5) p carries a Sasaki-3-structure, n = 4m, m > 2. 
(6) F carries a nearly parallel vector cross product (in the sense of Gray [ 12]), but not a 

Sasaki structure, n = 8. 

Remark. Let F be a simply connected complete manifold carrying real Killing spinor @. 
Then it is clear that I++ gives rise to spinor field @ on F x F! satisfying (8). Similarly, @ 
gives rise to spinor field ye on g x S’ satisfying (8). Thus, if 6 is one of the manifolds 
listed above, then M = i x S’ is a manifold on which the limiting case in Theorem 1.1 is 
attained. 

Now we restrict our attention on the case F = 9-l with n odd. In this case the converse 
of Theorem 3.1 is true. More precisely, we have: 

Theorem 3.2. Let M be a compact odd-dimensional oriented Riemannian manifold admit- 
ting a parallel one-form whose universal covering space is S”-’ x [w. Then: 
(a) The manifold M is diffeomolphic but not necessarily isometric to S”-’ x S’ with the 

standard product metric. 
(b) On the manifold M the limiting case in (2) is attained. 

Proof Let r be the fundamental group of M. Then r acts on S-i x R from the left and 
this action is free and properly discontinuous. Since r must preserve the metric and the 
orientation on S’-’ x R and the tangent vector field d/dt of [w, we easily obtain that r is 
isomorphic to Z, r = {(ak, ka): k E Z}, a! # 0. Here the action of (a, cr) E SO(n) x Iw on 
S- ’ x R is given by 

Sn-’ x R 3 (x, t) + (ax, t +a). 
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Let n : Y-’ x R + M be the projection. Denote by SL the circle with length o. Let 

ni : F-1 x R! + SA be the map defined by nl (x, t) = (a/2n)e2XGt/rr. There exists a 
map TC~ : M + $ such that 7~2 o n = nt and since n and nl are Riemannian submersions, 
7~2 is Riemannian submersion too. Hence IQ : M -+ SA is locally trivial fibre bundle. It 
is easy to see that its fibers are isometric to S”-’ and are totally geodesic submanifolds of 
M. Thus n2 : M + SA is locally trivial fibre bundle with standard fibre S”-’ and structure 
group contained in O(n). Hence, M is diffeomorphic (but not necessarily isometric) to the 
trivial bundle Sn-’ x St, which proves (a). 

To prove (b) we first recall some facts about spin structures on quotients of S”-’ (see 

[51). 
The total space of the bundle of oriented orthonormal frames of S”-’ is SO(n). The 

spin structure of Sn-’ is given by the double covering map 0 : Spin(n) -+ SO(n) and 
Spin(n - 1) acts on the total space Spin(n) as structure group from the right. Spinor fields 
over Sn-’ can be regarded as Spin@ - 1)-equivariant mappings from Spin(n) to the spinor 
spaceE,_t.Thef~-Killingspinorson,Y-’areoftheform@(g) = r*(g-‘)@(l),where 
t* are the representations of Spin(n) in &_t whose differential r,’ : spin(n) += Cl,_1 is 
given by 

r:(eiej) = eiej, lii<jF?z--1, 

r: (ei e,) = ff?i , lsicn-1 

(see @I). 
Let r be a finite fixed point free subgroup of SO(n). Then the spin structures of the 

quotient T\Y-’ are in one-to-one correspondence with homomorphisms E : f + Spin(n) 
such that 0 o E = idr. The total space of the spin structure is then given by s(f)\Spin(n) 
and spinor fields over the quotient correspond to s(r)-invariant spinor fields over S’-’ . 

Now let $l = Sn-’ x [w with n odd. The spin structure of k (i.e. the principal fibre bundle 
with structure group Spin(n) which double covers the bundle of oriented orthonormal frames 
of $) is reduced to the principal Spin@ - 1) bundle Spin(n) x Iw. Hence, the spinor bundle 
of ti is the bundle associated with Spin(n) x Iw with standard fibre E,, (= En-t) and the 
spinor fields over fi are Spin@ - 1)-equivariant mappings from Spin(n) x Iw to _?&. 

As we have seen, M = f \k, where r is generated by (a, U) E SO(n) x Iw. 
Similarly to the above argument, the spin structures of M are of the type s(r)\Spin(n) x 

iw, where e(r) is generated by (6, a) E Spin@) x aB such that 0 (6) = a. 
Hence, to prove (b) we have to find s(r)-invariant spinor field @ : Spin(n) x Iw + E,, 

such that for every t E !R +(., t) is Killing spinor on Y-l. 
Thus $ must be of the form 

@(g, t) = r*(g-‘Ml, t) and +(l, t + cz) = t*(Z)@(l, t) 

for every t E [w. (9) 

The action of t*(Z) on En_1 = .E,, is unitary. Let r$, . . . , cp,“m(m = (n - 1)/2) be a 
basis of E,, consisting of eigenvectors corresponding to the eigenvalues J.f, , . . , l.tm of 
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t*(6). Let 1&*(1, t) = (c’)“q$, where (c’)” = h’. Obviously, these spinor fields satisfy 

condition (9) and this completes the proof. 0 
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